文章类型: 论文|刊号 (ISSN): 3082-8295(O) / 2630-4759(P)

数字物流发展水平的综合评价研究

李玮帅 魏子超 西藏大学西藏拉萨 DOI:10.12238/ej.v8i10.2975

[摘 要] 为客观评价西藏数字物流的演进轨迹,本研究基于2015-2024年数据构建了三维评价体系。通过主成分分析(PCA)与模糊综合评价(FCE)的整合模型进行动态测度,研究发现:西藏数字物流发展并非线性增长,而是呈现显著的"V"型反弹趋势。其综合得分在经历初期下降后,自2019年起强劲回升,并在2020年实现了由"起步期"向"发展期"的关键跃迁。本研究揭示了其发展波动与结构性问题,并提出相应对策,为建设高原地区高效、普惠的现代物流体系提供参考。

[关键词] 西藏;数字物流;主成分分析法;模糊综合评价;评价指标体系

中图分类号: TN913.24 文献标识码: A

Comprehensive Evaluation Research on the Development Level of Digital Logistics

Weishuai Li Zichao Wei

Xizang University, Lhasa, Xizang

[Abstract] This study provides an objective evaluation of the evolutionary path of digital logistics in Tibet, constructing a three-dimensional assessment framework using 2015–2024 data. Through dynamic measurement with an integrated PCA and FCE model, we found that development has not been linear but shows a distinct "V-shaped" rebound. Following an initial dip, the comprehensive score recovered robustly from 2019 onward, making a key leap from the "start-up phase" to the "growth phase" in 2020. The study highlights these developmental volatilities and structural challenges, offering policy recommendations for establishing an efficient, inclusive, and modern logistics system in the high-altitude plateau region.

[Key words] Xizang;Digital Logistics; Principal Component Analysis Method; Fuzzy Comprehensive Evaluation; Evaluation Index System

引言

在全国数字物流高歌猛进之时^[1],学术界的目光大多还聚焦于东部发达地区^[2]。然而,这些地区的研究框架,显然无法直接套用在西藏——这个地理、经济环境极为特殊的战略边疆。

长期以来,高成本、低效率始终是西藏物流发展的切肤之痛。近年来,数字化转型虽已开启,但其真实进展究竟如何?背后的核心推手和现实阻力是什么?这些关键问题,不能只停留在宏观的定性描述上,迫切需要一把客观的量化标尺来精准衡量。

正是在这一背景下,本研究为西藏"量身定制"了一套数字物流发展评价体系。我们整合了主成分分析(PCA)与模糊综合评价(FCE)两种分析方法^[3],并基于2015至2024年的十年数据,力求清晰地勾勒出其发展的动态轨迹。其目的不仅在于评价"现在怎么样",更在于揭示其内在的结构性问题与增长潜力,为高原地区现代物流体系的下一步建设,提供一份有数据支撑的决策蓝图。

1 构建西藏数字物流发展水平综合评价框架

1.1评价指标体系构建

表1 西藏数字物流发展水平初步评价指标体系(2015-2024年)

维度	指标代码	指标名称	单位
A:数字物流基础设施(DLI)	DLI1	公路通车里程	万公里
	DLI2	光缆线路长度	万公里
	DLI3	快递营业网点数	处
	DLI4	每百人移动电话用户数	部
B:运营规模与效率(OSE)	OSE1	货物周转总量	亿吨公里
	0 SE2	快递业务总量	万件
	OSE3	快递业务总收入	亿元
	0SE4	人均快递使用量	件/人
C:社会经济贡献(SEC)	SEC1	地区生产总值(GDP)	亿元
	SEC2	第三产业增加值占 GDP 比重	%
	SEC3	社会消费品零售总额	亿元
	SEC4	农村居民人均可支配收入	元

文章类型: 论文|刊号 (ISSN): 3082-8295(O) / 2630-4759(P)

评价指标体系的构建是整个研究的基础。本文在构建评价指标体系时,遵循科学性、系统性和数据可得性原则,参考了俞 形晖等^[4]对中国物流业高质量发展水平构建的指标体系,并结合程刚等^[5]对西藏数字物流指标的构建,最终确定了三个一级指标和十二个二级指标。

1.2研究方法

1.2.1主成分分析法(PCA)

为解决上述12个指标间可能存在的高度相关性问题,并提炼出驱动系统发展的核心潜在结构,本研究采用主成分分析法 (PCA) ^[6]。该方法通过线性变换,将多个原始变量重组为少数几个互不相关的综合指标(即主成分),以期在简化数据结构的同时,最大限度地保留原始信息。分析的第一步是消除各指标量纲差异,采用Z-score方法对原始数据进行标准化处理:

$$Z_{ij} = \frac{X_{ij} - \overline{X}_j}{S_j} \tag{1}$$

其中, Z_i为标准化后的数据, Xij为原始数据, X_i和S_i分别为第 j个指标的均值与标准差。基于标准化数据计算相关系数矩阵, 并求解其特征值与特征向量, 最终得到各主成分的得分, 其计算 公式为:

$$F_k = \sum_{i=1}^p l_{kj} Z_j \tag{2}$$

其中, F_k 是第k个主成分的得分, l_{ki} 是第k个主成分在第j个原始指标上的载荷系数, Z_i 是标准化后的第j个指标值, p为原始指标总数。

1.2.2模糊综合评价法(FCE)

在识别出核心主成分后,为动态评估西藏数字物流的整体发展水平,本研究引入了模糊综合评价法(FCE)^[7]。该方法基于模糊数学,采用加权平均型算子进行模糊合成运算,能将定性判断与定量数据相结合,适用于处理评价标准边界不清的复杂问题。

$$B = A \circ R \tag{3}$$

具体到每个评语等级的隶属度计算为:

$$b_{j} = \sum_{i=1}^{m} a_{i} \cdot r_{ij}, \quad (j = 1, 2, \dots n)$$
(4)

其中, $B=(b_1,b_2,\ldots,b_n)$ 是最终的综合评价向量, $A=(a_1,a_2,\ldots,a_n)$ 是各主成分的权重向量, R为模糊关系矩阵。 b_1 代表对第 j个评语等级的最终隶属度, a_i 是第 i个主成分的权重, r_{ij} 则是第 i个主成分对第 j个评语等级的隶属度, m和n分别为主成分和评语等级的数量。

1.3实证分析与结果

1.3.1主成分分析结果

将2015-2024年的12项指标数据进行标准化处理后,进行主成分分析。根据累计方差贡献率超过95%的原则,共提取出3个主成分。如表2所示,这3个主成分的累计方差贡献率达到99.24%,意味着它们已能充分解释原始数据中的绝大部分信息,降维效果理想。

表2 西藏数字物流发展指标的主成分分析结果

主成分	特征值(Eigenvalue)	方差贡献率(%)	累计方差贡献率(%)
PC1	12.17	91.26	91.26
PC2	0. 68	5.08	96. 34
PC3	0. 39	2.91	99. 24

通过分析各原始指标在主成分上的载荷,可对这三个维度进行解读:

第一主成分(PC1): 规模与基础: 方差贡献率高达91.26%, 代表由宏观经济与基础设施定义的物理体量,是发展的绝对 核心。

第二主成分(PC2):数字渗透与效率:方差贡献率为5.08%。 反映数字技术的社会普及度与现代化服务效率。

第三主成分(PC3): 城乡融合与潜力: 方差贡献率为2.91%。 揭示物流网络向乡村下沉的广度及其激活农村市场的潜力。

1.3.2模糊综合评价结果

以三个主成分的年度得分为基础,设定"萌芽期"、"起步期"、"发展期"、"成熟期"四个评价等级,并以各主成分的方差贡献率作为权重、进行模糊综合评价。

结果如表3所示。

表3 西藏数字物流发展水平模糊综合评价结果(2015-2024年)

年份	综合评价向量 B= (萌芽期, 起步期, 发展期, 成熟期)	最大隶属度等级	综合得分(满分4)
2015	(0. 31, 0. 25, 0. 24, 0. 20)	萌芽期	2.52
2016	(0.34, 0.25, 0.24, 0.16)	萌芽期	2.38
2017	(0. 42, 0. 27, 0. 18, 0. 13)	萌芽期	2.14
2018	(0.83, 0.12, 0.03, 0.02)	萌芽期	1.25
2019	(0.07, 0.84, 0.06, 0.03)	起步期	2.08
2020	(0. 03, 0. 06, 0. 87, 0. 03)	发展期	2.93
2021	(0. 08, 0. 15, 0. 19, 0. 57)	成熟期	3.83
2022	(0. 08, 0. 15, 0. 19, 0. 57)	成熟期	3.60
2023	(0. 12, 0. 16, 0. 23, 0. 49)	成熟期	3.19
2024	(0. 18, 0. 23, 0. 25, 0. 35)	成熟期	3.12

西藏数字物流的发展呈现"V"型走势。在经历2018年触及1.25分的低谷后,其发展水平迅速反弹,并于2020年和2021年相继实现向"发展期"与"成熟期"的关键跃迁,得分一度达到3.83的峰值,标志着其已进入注重质量与数字深化的新阶段。

2 结论与建议

2.1研究结论

本研究的核心结论是:西藏数字物流的发展路径呈现显著的"V"型波动,而非简单的线性增长。在经历初期调整后,其增长动能已从依赖大规模基建的"规模驱动"阶段,成功转向由"数字效率"与"城乡融合"共同发力的内涵式增长阶段。当前,虽然后发优势与政策扶持带来了跨越式发展,但发展不均的"中心-外围"结构与高昂运营成本,依然是制约其网络韧性的核心瓶颈。

2.2政策建议

为推动西藏数字物流高质量发展,建议从三方面协同发力。

文章类型: 论文|刊号 (ISSN): 3082-8295(O) / 2630-4759(P)

政府层面, 政策资源应向"最后100公里"末端网络精准倾斜, 并牵头构建产学研一体的高海拔科创生态。企业层面, 需超越传 统包裹业务, 向服务本地特色产业的B2B供应链升级, 同时探索 "技术即服务"(TaaS)模式以降低社会成本。技术供应商则应 聚焦研发高可靠性的高原特种装备, 并开发深度融合本地气象、 交通等数据的AI决策系统, 以全面提升供应链的智能化与抗风 险能力。

[基金项目]

西藏大学校级大学生创新创业训练计划项目"基于机器学习的西藏物流发展现状分析与未来规划"(2025XCX018)。

[参考文献]

[1]周辉.数字经济背景下智慧物流发展的路径研究[J].现代商业研究,2024,(11):5-7.

[2]宾厚,吴冕,张路行.长三角城市群物流业高质量发展水平测度研究及评价[J].物流研究,2024,(02):65-70.

[3]仇奕沁.基于主成分分析-模糊综合评价模型在区域环

境空气质量评价中应用[J].当代化工研究,2023,(24):130-132.

[4]俞彤晖,吴瑞福,徐永燕.中国物流业高质量发展水平测度及时空演化特征研究[J].物流研究,2023,(01):10-31.

[5]程刚,郑雄飞,珠扎.数字物流、农牧业发展和区域经济增长耦合协调度分析——以边疆三省为例[J].西藏大学学报(社会科学版),2024,39(04):202-210.

[6]张鹏.基于主成分分析的综合评价研究[D].南京理工大学.2004.

[7]任丽华.模糊综合评价法的数学建模方法简介[J].商场现代化,2006,(20):8-9.

作者简介:

李玮帅(2005--),男,汉族,河北石家庄人,本科在读,主要从 事物流管理方面的研究。

魏子超(2004--),男,汉族,河南焦作人,本科在读,主要从事物流管理方面的研究。